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PERFORMANCE O F  FIVE ABLATION MATERIALS AS COATINGS 

FOR STRUCTURES I N  A REGION O F  SEPARATED FLOW 

By Louis E. Clark and Allen G. McLain 
Langley Research Center 

SUMMARY 

An inves t iga t ion  w a s  made of severa l  commercially ava i l ab le  ab la t ion  mate- 
r i a l s  f o r  use as thermal pro tec t ion  f o r  t h e  sidewalls of advanced a i r - t o - a i r  
missiles.  Material  specimens of d i f f e r e n t  thickness were t e s t e d  on t h e  cylin- 
d r i c a l  sec t ion  of a rounded-ogive-cylinder model. The t e s t s  were conducted i n  
t h e  Langley 11-inch ceramic-heated tunnel a t  a heating r a t e ,  enthalpy, and f r ee -  
stream Mach number t y p i c a l  of t h e  values of these  parameters encountered during 
a mis s i l e  t r a j e c t o r y .  Oil-flow and pressure t e s t s  showed t h a t  t he  boundary 
l a y e r  had separated from t h e  cy l ind r i ca l  sec t ion  of t h e  model and t h a t  the  
e n t i r e  specimen region w a s  immersed i n  separated flow. I n  t h e  separated-flow 
environment, a phenolic-cork composition was found t o  be superior t o  t h e  o ther  
mater ia l s  studied i n  l imi t ing  t h e  subs t ra te  temperature r i s e .  The phenolic- 
cork composition experienced considerably g rea t e r  erosion than t h e  phenolic- 
nylon, asbestos-phenolic, and subliming-salt compositions, which ranked second, 
t h i r d ,  and four th ,  respec t ive ly ,  i n  l imi t ing  t h e  subs t r a t e  temperature r i s e ;  
however, these  mater ia l s  developed e i t h e r  surface cracks o r  la rge  f i s s u r e s  i n  
t h e  char l aye r .  Preconditioning of t h e  phenolic-cork, asbestos-phenolic, and 
epoxy-solid materials by heat cycling t o  400' F (478' K) d i d  not decrease t h e i r  
thermal performance. 

I m O D U C T I O N  

It i s  an t i c ipa t ed  t h a t  a i r - t o - a i r  missiles, which w i l l  be employed by 
advanced supersonic f i g h t e r  a i r c r a f t ,  w i l l  f l y  a t  v e l o c i t i e s  high enough t o  
requi re  thermal pro tec t ion  on t h e  sidewalls a s  we l l  as i n  t h e  stagnation 
regions. During a t y p i c a l  t r a j e c t o r y ,  t h e  miss i le  sidewalls may experience 
hea t ing  r a t e s  up t o  about 13 Btu/ft2-sec (1-70 kW/m2) with r ad ia t ion  equilibrium 
temperatures of 1500° F (1089~ K) . The use of hea t - r e s i s t an t  metals t o  pro- 
vide t h e  required thermal pro tec t ion  would impose a l a rge  weight penalty. A 
promising approach t o  provide a lightweight thermal-protection system f o r  t h e  
sidewalls of such m i s s i l e s  i s  t h e  use of a low-density ab la t ing  material 
applied t o  an aluminum substructure.  Therefore, a l imi ted  tes t  program has 
been conducted t o  evaluate severa l  ab la t ion  mater ia l s  on t h e  basis of t h e  
weight required t o  l i m i t  t h e  substructure t o  a given temperature r i s e ,  t h e  
amount of ma te r i a l  eroded, and t h e  char-layer c h a r a c t e r i s t i c s .  



The inves t iga t ion  w a s  conducted i n  t h e  Langley 11-inch ceramic-heated 
tunnel  a t  a hea t ing  r a t e  of 10 Btu/ft2-sec (113 kW/m2), a t  an enthalpy of 
900 Btu/lb (2.09 MJ/kg), and a t  a free-stream Mach number of 6, which are t y p i -  
c a l  values f o r  these parameters experienced by t h e  missile sidewalls during a 
t r a j e c t o r y .  The mater ia l  specimens were mounted on t h e  cy l ind r i ca l  sec t ion  
of a rounded-ogive-cylinder model t o  obtain t h e  des i red  heating r a t e .  Four 
mater ia l s  were se lec ted  f o r  evaluation on t h e  b a s i s  of t h e i r  i n su la t ive  charac- 
t e r i s t i c s ,  ease of appl ica t ion ,  and commercial a v a i l a b i l i t y .  The four  mate- 
r i a l s  se lec ted  were: (a )  a phenolic-cork composition, (b)  an asbestos tape-  
phenolic composition, ( c )  a two-part epoxy and s o l i d  composition, and (d )  a 
composition of an inorganic subliming sal t  and an organic binder.  The f i rs t  
two materials may be wrapped or molded t o  shape and bonded t o  t h e  substructure 
while t h e  l a t t e r  two a r e  sprayed d i r e c t l y  t o  the  substructure.  I n  addi t ion ,  a 
low-density molded phenolic-nylon-silica composition formulated a t  NASA Langley 
Research Center w a s  t e s t e d .  This report  p resents  t h e  r e s u l t s  of t h e  t e s t  
program. 

SYMBOLS 

The u n i t s  used i n  t h e  present paper are given i n  both U.S. Customary Units 
and t h e  In t e rna t iona l  System of Units ( S I ) .  
a r e  given i n  reference 1. 

Factors r e l a t i n g  t h e  two systems 

s p e c i f i c  hea t  of calorimeter material, Btu/lb-OR (J/kg %) P C 

E thermal e f fec t iveness ,  Btu/lb (J/kg) 

L d i s tance  from flow separation point t o  r e a r  of specimen, i n .  (em) 

cold-wall heating r a t e ,  Btu/ft2-sec (W/m*) 
9, 

t time, see 

T W 

AT 

temperature of calorimeter wall, OF (OK) 

substructure temperature r i s e  a t  back surface,  OF (OK) 

W 

X d i s tance  from separation point,  i n .  (em) 

7 

P 

weight of pro tec t ion  mater ia l  per  u n i t  area,  l b / f t 2  (kg/m2) 

th ickness  of calorimeter wall, f t  (cm) 

dens i ty  of calorimeter mater ia l ,  l b / f t3  (kg/m3) 

2 
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APPARATUS AND TESTS 

Langley 11-Inch Ceramic-Heated Tunnel 

The ma te r i a l s  were t e s t e d  i n  t h e  Langley 11-inch ceramic-heated tunnel 
( f i g .  1) which i s  equipped with a Mach 6 nozzle. This f a c i l i t y  cons i s t s  of a 
l a rge  cy l ind r i ca l  pressure ves se l  l i n e d  with r e f r ac to ry  b r i ck  and f i l l e d  with 
zirconia and alumina spheres. The spheres a re  heated by t h e  products of com- 
bustion from a gas burner u n t i l  t h e  des i red  bed temperature i s  reached. 
burner i s  then turned of f  and a i r  i s  brought i n  a t  t h e  bottom of t h e  vesse l  and 
i s  heated by passing through the bed. After being heated b y  t h e  bed, t h e  a i r  
expands through a conical nozzle and flows through t h e  f r e e - j e t  t e s t  sec t ion  
and d i f f u s e r  t o  the  atmosphere. When t h e  desired conditions have been estab- 
l i shed ,  t h e  model i s  in se r t ed  i n t o  the  t e s t  sec t ion  from the  model bay by means 
of a model-insertion mechanism. A photograph of t h e  model inser ted  i n  t h e  t e s t  
sec t ion  i s  shown i n  f igu re  2. The tunnel  i s  described i n  d e t a i l  i n  r e f e r -  
ences 2 and 3. 

The 

Test Model 

I n  order t o  obtain the  des i red  heating r a t e ,  t he  mater ia l  specimens were 
mounted on t h e  cy l ind r i ca l  sec t ion  of a rounded-ogive-cylinder model. The 
model, shown i n  f igu re  3 ,  had four rectangular c a v i t i e s  or blanks i n  the  cylin- 
d r i c a l  sec t ion  i n  which the  ma te r i a l  specimens were mounted. Er rors  due t o  con- 
duction of heat from t h e  specimen t o  t h e  model body were minimized by 
r e s t r i c t i n g  the  conduction pa ths  by the  use of screws t o  hold. and support t h e  
specimen. The model w a s  constructed of copper and had a t o t a l  l ength  of 

3 
8 4 
9 inches (21.27 cm) and a diameter of 3- inches (9.53 em). The nose shape 

was a rounded-tangent-ogive configuration with a r ing  i n s t a l l e d  on t h e  nose as 
a boundary-layer t r i p .  The model was water cooled t o  prevent excessive heating 
of the  nose and thermocouple leads .  

Heat-Transfer Models 

The cold-wall heat f l u x  t o  t h e  mater ia l  t e s t  region w a s  determined by 
using two d i f f e r e n t  calorimeters which were designed t o  f i t  i n  t h e  model t e s t  
blanks.  The two calorimeters used were a thin-wall  slope type of calorimeter 
and a commercial continuous-reading type of calorimeter.  The continuous-reading 
calorimeter gives the  va r i a t ion  of heating r a t e  with time, whereas t h e  slope 
calorimeter gives t h e  heating r a t e  a t  only one time for each in se r t ion  i n  t h e  
t e s t  stream. However, t h e  slope calorimeter i s  much simpler t o  construct and 
use. 

Thin-wall slope type of calorimeter.-  The thin-wall  slope type of calorim- 
e t e r  i s  i l l u s t r a t e d  i n  f i g u r e  4(a) .  
model shape with thermocouples attached t o  t h e  back surface.  The calorimeter 
i s  constructed with a t h i n  w a l l  t o  minimize conduction e r r o r s .  With t h e  

It cons i s t s  of a t h i n  w a l l  contoured t o  t h e  
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calorimeter i n s t a l l e d  i n  t h e  t es t  blank on the afterbody, t h e  model i s  r ap id ly  
in se r t ed  i n t o  t h e  stream and t h e  change of w a l l  temperature with t i m e  i s  
recorded by an oscil lograph. The change of w a l l  temperature with time was 
measured 0.1 second a f t e r  t h e  model reached t h e  stream center  l i n e .  At t h i s  
t i m e ,  t r a n s i e n t  e f f e c t s  were not present and it i s  believed t h a t  conduction 
along the  surface w a s  neg l ig ib l e  s ince  t h e  calorimeter w a s  s t i l l  e s s e n t i a l l y  - -  

isothermal. The t i m e  rate of change of t h e  w a l l  
r i a l  proper t ies  a r e  subs t i t u t ed  i n  t h e  following 
rate : 

temperature and t h e  w a l l  m a t e -  
equation t o  obtain t h e  heating 

Continuous-reading-cal.orimet.gr.- -. . The continuous-reading calorimeter con- 
s is ts  of a t h i n  d i sk  which is fa-s'tened along i t s  edge t o  a heat sink. 
appl ica t ion  of  a hea t  f l u x  t o  t h e  d i sk  causes a flow of heat from t h e  center of 
t h e  d i sk  t o  i t s  edge. One wire of a thermocouple p a i r  i s  attached t o  t h e  ten- 
t e r  back surface of t h e  d i sk  and forms a hot junction; t h e  o ther  thermocouple 
wire i s  attached t o  t h e  heat s ink  a t  t h e  edge of t he  d i s k  t o  form t h e  cold 
junction of a d i f f e r e n t i a l  thermocouple. 
which measures t h e  temperature drop between t h e  d i sk  center  and edge, i s  propor- 
t i o n a l  t o  t h e  hea t ing  rate. Cal ibra t ion  curves f o r  t h e  calorimeter were sup- 
p l ied  by t h e  manufacturer and an ana lys i s  of t h i s  type of calorimeter i s  given 
i n  reference 4. Figure 4(b)  i s  a sec t ion  view of t h e  calorimeter f i t t e d  i n t o  
a mounting p l a t e  which i s  i n s t a l l e d  i n  a blank on t h e  model cy l ind r i ca l  section. 

The 

The output of t h e  thermocouple p a i r ,  

Pressure-Distribution Model 

Model s t a t i c  pressures i n  t h e  mater ia l  t e s t i n g  regions were measured w i t h  
t h e  o r i f i c e  p l a t e  shown i n  f igu re  5 which w a s  i n s t a l l e d  i n  the  model blanks. 
The p l a t e  was contoured t o  t h e  body shape and contained o r i f i c e s  a t  t h e  same 
streamwise loca t ions  a s , t h o s e  a t  which hea t - t ransfer  measurements were made; 
an  addi t iona l  o r i f i c e  was loca ted  a t  t he  r ea r  of t h e  specimen region. The 
o r i f i c e s  were 0.03 inch (0.076 cm) i n  diameter and monel and p l a s t i c  tubing 
connected t h e  o r i f i c e  t o  a strain-gage pressure transducer.  

Ablation-Material Specimens 

The mater ia l  t es t  specimens consisted of varying thicknesses of t h e  mate- 
r i a l s  bonded t o  a 0.05-inch-thick (O.127-cm) aluminum subs t r a t e  t o  which thermo- 
couples were attached. The arrangement i s  shown i n  f igu re  6. 
were 3 inches (7.62 cm) long and 1 inch (2.54 cm) wide and were made t o  f i t  
snugly i n  the  blanks on the  model cy l ind r i ca l  sec t ion .  The mater ia l s  were 
bonded t o  the  aluminum subs t r a t e  by means of an epoxy adhesive, which w a s  used 
because of i t s  a b i l i t y  t o  form a strong bond with aluminum. Specimens of 0.10, 
0.20, and 0.25 inch (0.254, 0.508, and 0.635 cm) thickness were t e s t ed .  

The specimens 

4 



The materials t e s t e d  i n  t h i s  inves t iga t ion  are enumerated i n  t a b l e  I. The 
dens i ty  of these  materials ranges from 30 t o  62 l b / f t 3  (480.6 t o  993.2 kg/m3). 
All t h e  mater ia l s ,  with t h e  poss ib le  exception of t h e  subliming sal t ,  were 
expected t o  form chars during ab la t ion .  Each of t he  five materials i s  ava i lab le  
commercially and a l l  have r e l a t i v e l y  low thermal conduct iv i t ies .  

To inves t iga t e  t h e  e f f e c t  of t h e  prelaunch heating which occurs when m i s -  
s i l e s  a r e  ca r r i ed  ex te rna l ly  by high-performance a i r c r a f t ,  several of t h e  m a t e -  
r ia ls  were heat cycled from -650 F ' t o  400° F (219' K t o  478' K) before t e s t i n g .  
T h i s  cycling simulates a number of a i r c r a f t  flights under a wide range of l o c a l  
c l imat ic  conditions. During the  hea t  cycling, t h e  materials were held a t  
400° F (478O K) f o r  a t o t a l  of 50 minutes t o  simulate the heating occurring a t  
t h e  a i r c r a f t  top  speed. 

T e s t  Procedure and Tunnel Conditions 

The procedure followed f o r  t e s t i n g  consisted of :  (1) Estab l i sh ing  tunnel 
conditions ( s tagnat ion  temperature of 2 8 0 0 ~  F (1810~ K) and stagnation pressure 
of 1013 ps ia  (7.0 m/m2) ) , (2) allowing equilibrium t o  be reached, and 
(3) exposing t h e  model, with specimens i n  place, t o  t h e  flow f o r  60 seconds. 

During t h e  exposure t o  t h e  flow, t h e  surface behavior of each mater ia l  w a s  
observed on high-speed motion-picture f i l m ,  and, i n  some tests, shadowgraph 
p i c t u r e s  were taken. Thermocouple and pressure-transducer outputs were moni- 
t o red  with osc i l lograph  recorders. The tunnel  operating conditions are sum- 
marized i n  t a b l e  11, and t h e  measurement of t h e  tunnel  stagnation temperature 
and Mach number i s  discussed i n  references 2 and 3 .  

To define t h e  flow i n  t h e  specimen region, a s e r i e s  of tests w a s  conducted 
with t h e  calorimeter and pressure-or i f ice  p l a t e s  i n s t a l l e d  i n  the  blanks on t h e  
model cy l ind r i ca l  sec t ion .  To avoid possible in te r fe rence  e f f e c t s ,  t he  model 
w a s  o r ien ted  so t h a t  t h ree  of t h e  tes t  blanks were located out of t h e  proximity 
of t he  support s t r u t ,  and these  blanks were used t o  t e s t  t he  mater ia l  specimens. 

RESULTS AND DISCUSSION 

Determination of T e s t  Environment 

The streamwise heat-flux d i s t r i b u t i o n  measured a t  t h e  t h r e e  specimen t e s t  
l oca t ions  on t h e  model cy l ind r i ca l  sec t ion  i s  shown i n  f igu re  7. The heat f l u x  
over t h e  t e s t  l oca t ions  w a s  found t o  increase i n  t h e  streamwise d i r ec t ion  by 
about 35 percent, and up t o  about 20-percent d i f fe rences  i n  heating rate ex is ted  
between the  three tes t  pos i t i ons  a t  t h e  same longi tudina l  location. A s  shown 
i n  f igu re  7, t h e  heating rate increased from approximately double the ca lcu la ted  
laminar value (ref. 5) near t h e  f r o n t  of t h e  specimens and reached values 
approximately equal t o  t h e  calculated turbulen t  heating rates i n  t h e  material 
t e s t  region. I n  view of t h i s  va r i a t ion ,  f u r t h e r  tes ts  and ana lys i s  were made 
t o  define t h e  t e s t  flow conditions.  
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Streamwise measurements of model s t a t i c  pressure gave a constant value of 
1.75 p s i a  (12.1 kN/m2) over t h e  length of t h e  specimen region whereas a s t a t i c  
pressure of about 0.9 p s i a  (6.2 kN/m2) would normally be expected i n  t h i s  
region. The abnormally high s t a t i c  pressure and increasing streamwise heating 
r a t e  were suggestive of poss ib le  boundary-layer separation, and, t o  explore t h i s  
p o s s i b i l i t y ,  a series of oil-drop tes ts  were made i n  which t h e  movement of 
d rop le t s  of an o i l  and soot mixture over t h e  surface of t h e  model w a s  photo- 
graphed during a tes t .  Figure 8, which i s  a t y p i c a l  oil-drop photograph, shows 
t h a t  reverse flow c h a r a c t e r i s t i c  of a separated boundary l aye r  w a s  occurring 
over t h e  model cy l ind r i ca l  section, and t h a t  t h e  tes t  pos i t i ons  were completely 
immersed i n  separated flow. The separation point i s  indicated by t h e  r i n g  of 
o i l  which i s  loca ted  near t h e  nose cy l inder  junction of t h e  model. This r i n g  
i s  formed by the  o i l  flowing back over t h e  nose merging with t h e  forward flow 
of o i l  from t h e  separated region. No evidence of reattachment of t h e  boundary 
l a y e r  on t h e  model w a s  observed. 

The state of t he  separated boundary l aye r  w a s  not d e f i n i t e l y  determined 
from these  t e s t s ,  although it i s  probably t r a n s i t i o n a l  o r  tu rbulen t .  Shadow- 
graph s tud ie s  showed t h e  presence of a shock a t  t h e  separation point,  but t h e  
shadowgraph w a s  not s ens i t i ve  enough t o  b r ing  out t h e  d e t a i l s  of t h e  boundary 
l aye r  i n  t h e  separated region. To i nves t iga t e  the  state of t h e  separated 
boundary l aye r  f u r t h e r ,  t h e  heating-rate d i s t r i b u t i o n s  were compared with t h e  
d i s t r i b u t i o n s  f o r  cav i ty  and la rge-sca le  wedge types of separation reported i n  
t h e  l i t e r a t u r e .  However, these  d i s t r i b u t i o n s  were considerably d i f f e r e n t  from 
those of t h e  present t e s t s .  References 6, 7, and 8 repor t  t h a t  t h e  hea t  flux 
f o r  t h e  laminar and turbulen t  separated boundary l aye r s  f o r  cav i ty  and la rge-  
s ca l e  wedge types  of separation decreased below t h e  attached boundary-layer 
value near t h e  separation point and remained a t  about 56 percent of t h e  attached 
value u n t i l  t h e  reattachment point was approached, a t  which poin t ,  t h e  heat f l u x  
increased rap id ly .  I n  t h e  present tes ts  ( a s  shown i n  f i g .  7) t h e  heat f l u x  was 
considerably above t h e  attached laminar value a short  d i s tance  downstream of 
separation and increased r ap id ly  t o  t h e  turbulen t  value although the  boundary 
l a y e r  apparently d id  not r ea t t ach  on t h e  model. I n  addi t ion  t o  attached flow, 
regions of separated flow may e x i s t  on a i r - t o - a i r  missiles and, therefore ,  tes ts  
were conducted t o  determine t h e  behavior of ab la t ion  mater ia l s  under separated- 
flow conditions . 

Material Evaluation 

The ma te r i a l s  were evaluated on t h e  b a s i s  of t h e  weight required t o  limit 
t h e  subs t ra te  temperature r i s e  t o  a given value, t h e  amount of material eroded, 
and t h e  char c h a r a c t e r i s t i c s .  

Substrate tempe-rature r i s e . -  A l i m i t  of 100' F (56' K )  i n  subs t r a t e  tem- 
pera ture  r i s e  w a s  se lec ted  because mis s i l e s  car r ied  ex te rna l ly  by high- 
performance a i r c r a f t  may experience temperatures up t o  350' F (450° K )  due t o  
aerodynamic heating caused by t h e  ve loc i ty  of t h e  a i r c r a f t .  A n  increase of 
looo F (56' K) during t h e  missile f l i g h t  gives a f i n a l  subs t r a t e  temperature of 
450' F (506' K ) ,  which was taken as the  design temperature l i m i t  f o r  an alumi- 
num substructure because of t he  decrease i n  s t rength  of aluminum a l l o y s  a t  

6 



elevated temperatures. It w a s  considered des i rab le  t o  evaluate t h e  mater ia l s  
a t  a common heating rate, and, since t h e  heat flux t o  t h e  specimen varied not 
only with distance along t h e  specimen but a l s o  with t h e  t es t  pos i t ion  a s  shown 
i n  f i g u r e  7, t h e  ma te r i a l s  were evaluated a t  t h e  streamwise loca t ion  f o r  each 
pos i t ion  which corresponded t o  a heating rate of 10 Btu/ft*-sec (113 kW/m2). 

To evaluate t h e  materials, a p l o t  of t h e  t o t a l  heat input required f o r  a 
100' F (56' K) rise i n  subs t r a t e  temperature aga ins t  t h e  material weight per  
u n i t  area w a s  made, as shown i n  figure 9. From t h i s  f i gu re  it i s  evident t h a t  
t h e  ma te r i a l  represented by t h e  l i n e  with t h e  g r e a t e s t  slope exh ib i t s  t h e  
superior performance. The phenolic-cork performs b e s t  i n  pro tec t ing  t h e  sub- 
s t r a t e  from a looo F (56' K) temperature r i s e  a t  a l l  weights per u n i t  a rea  
t e s t e d .  The asbestos-phenolic, subliming-salt,  and phenolic-nylon compositions 
f a l l  considerably below phenolic-cork. The asbestos-phenolic and phenolic- 
nylon have about t h e  same performance whereas t h e  subliming salt i s  somewhat 
lower. The epoxy s o l i d  i s  seen t o  have t h e  lowest performance of t he  f i v e  
mater ia l s  t e s t ed .  

Figure 10 shows t h e  r e s u l t s  of t e s t s  of heat-cycled specimens of the 
phenolic-cork, asbestos-phenolic, and epoxy-solid compositions. It can be seen 
t h a t  heat cycling d id  not s i g n i f i c a n t l y  decrease t h e  in su la t ion  performance 
of t hese  mater ia l s .  

Char cha rac t e r i s t i c s . -  Although t h e  phenolic-cork composition w a s  superior 
t o  t h e  o ther  mater ia l s  t e s t e d  from an in su la t ion  standpoint, it experienced 
more erosion than d id  phenolic-nylon, t h e  subliming-salt,  o r  t he  asbestos- 
phenolic compositions. Based on erosion alone, any of these  mater ia l s  would be 
more su i t ab le  than phenolic-cork. The epoxy-solid composition not only had the  
lowest i n su la t ion  performance but a l s o  experienced t h e  g r e a t e s t  erosion of t h e  
mater ia l s  t e s t e d .  The r e l a t i v e  erosion of t h e  materials can be seen i n  t h e  
photographs of t h e  sectioned specimens i n  f igu re  11. The l i g h t l y  shaded area 
shows t h e  specimen shape before t e s t i n g  while t h e  darker area i s  a photograph 
of t h e  specimen a f t e r  t e s t i n g .  Also apparent i s  t h e  g rea t e r  erosion which 
occurred a t  t he  r e a r  por t ion  of t h e  specimens where t h e  highest  heating r a t e  
w a s  experienced. 

The erosion of t he  ma te r i a l s  w a s  probably s t rongly  influenced by the  char 
charac te r .  Phenolic-cork formed a soft, powdery char which i s  e a s i l y  sheared 
from t h e  v i r g i n  material. Photographs of t h e  phenolic-cork before and after 
t e s t i n g  are shown i n  f i g u r e  12 (a ) .  
t h e  asbestos-phenolic compositions experienced very l i t t l e  erosion and a l l  
formed a r e l a t i v e l y  t h i c k  char zone. The phenolic-nylon developed deep f i s s u r e s  
i n  t h e  char which could have reduced i t s  in su la t ing  performance. These f issures  
a r e  v i s i b l e  i n  f igu re  12(b). 
probably strengthened by melted s i l i c o n  dioxide formed from t h e  s i l i c a  Ecco- 
spheres. The subliming s a l t  a l s o  developed f i s s u r e s  i n  t h e  surface as shown i n  
f i g u r e  12 (c ) .  These cracks were not as deep nor a s  extensive as those formed 
i n  phenolic-nylon and appeared t o  emanate from l o c a l  b l i s t e r s  i n  t h e  surface. 
Most of the b l i s t e r s  w e r e  observed a t  t h e  r e a r  of the specimens where the 
h ighes t  heating rate w a s  experienced. A very s m a l l  change of shape occurred 
f o r  t h e  asbestos-phenolic composition; however, as can be seen i n  f igu re  12(d) ,  

The phenolic-nylon, t h e  subliming-salt,  and 

The phenolic-nylon char w a s  very hard and w a s  



I I I l1ll1111ll1llI I II Ill 

t h i s  ma te r i a l  a l s o  developed surface cracks. The cracks were r e l a t i v e l y  deep 
and were caused by separation between l a y e r s  of t h e  molding tape  which w a s  
wrapped a t  an angle of 30' t o  t h e  aluminum subs t r a t e  i n  f ab r i ca t ing  t h e  speci-  
mens. The epoxy-solid formed a t h i n  char l a y e r  which spalled i n  f l a k e s  some- 
t i m e s  approximately 0.3 inch (1.27 cm) i n  diameter. 
porous. Photographs of t h e  epoxy-solid before and a f t e r  t e s t i n g  a r e  shown i n  
f i g u r e  12 (e ) .  

The char w a s  very hard and 

I n  summary, t h e  phenolic-nylon, asbestos-phenolic, and subliming-salt com- 
pos i t i ons  which ranked second, t h i r d ,  and four th ,  respectively,  i n  i n s u l a t i o n  
performance, looked b e t t e r  from an erosion standpoint; however, t hese  three 
mater ia l s  developed surface cracks o r  l a r g e  f i s s u r e s  i n  t h e  char surface.  The 
phenolic-cork and epoxy-solid compositions exhibited l a rge  surface erosion 
r a t e s ,  which could be an important f a c t o r  i n  appl ica t ions  where l a rge  shape 
changes would a f f e c t  t h e  aerodynamic c h a r a c t e r i s t i c s  of t h e  m i s s i l e .  

Thermal Ef fec t iveness  

The product of t h e  cold-wall heating r a t e  and t h e  time f o r  a given sub- 
s t r a t e  temperature r ise divided by t h e  weight of pro tec t ion  mater ia l  per u n i t  

a rea  E = - i s  f requent ly  used as a measure of t h e  thermal e f fec t iveness  of 

charring ab la t ion  ma te r i a l s .  
by a number of names including: i n su la t ion  e f f ic iency ,  thermal e f fec t iveness ,  
thermal sh ie ld ing  e f f ic iency ,  and e f f e c t i v e  hea t  capacity. 

W 
T h i s  parameter i s  r e fe r r ed  t o  i n  t h e  1i;erature 

The v a r i a t i o n  of thermal e f fec t iveness  (based on a 100' F ( 5 6 O  K )  sub- 
s t r a t e  temperature r i s e )  with heat sh ie ld  weight pe r  u n i t  a rea  i s  shown i n  f i g -  
ure  13. It i s  seen t h a t  t h e  phenolic-cork maintains a constant e f fec t iveness  

a s  t h e  u n i t  weight i s  increased by a f a c t o r  of 2A whereas the  phenolic-nylon, 

subliming-salt,  epoxy-solid, and asbestos-phenolic compositions show increases  
of 15 percent t o  30 percent i n i t i a l l y ,  and then as t h e  u n i t  weight i s  increased 
over two times, t h e  thermal e f fec t iveness  appears t o  approach a constant value.  

2 

For t h e  s ing le  th ickness  of 0 .1  inch (0.234 cm), a subs t ra te  temperature 
r i s e  of TOO0 F (1670 K) was a t t a ined  f o r  each ma te r i a l  except cork, which 
required an ex t rapola t ion  of 100' F (so K) . Figure 14 shows the  thermal 
e f fec t iveness  a s  a func t ion  of subs t ra te  temperature r i s e  f o r  t he  0.1-inch- 
t h i c k  (0.234-cm) specimens. An increase of a f a c t o r  of 3 i n  t h e  allowable sub- 
s t r a t e  temperature r i s e  (from 100' F (56' K) t o  300' F (167O K ) )  resu l ted  i n  an 
increase i n  thermal e f fec t iveness  of about a f a c t o r  of 2 f o r  a l l  mater ia l s .  
Phenolic-cork maintained about t h e  same r e l a t i v e  superior performance over t h e  
range of subs t r a t e  temperatures with the  exception of phenolic-nylon. The 
thermal e f f ec t iveness  of phenolic-nylon increased a t  a grea te r  r a t e  with sub- 
s t r a t e  temperature r i s e  than phenolic-cork, and consequently t h e  r e l a t i v e  
supe r io r i ty  of phenolic-cork over phenolic-nylon decreased a t  t h e  higher 
temperatures. 

I 



An estimate of t h e  e f f e c t  of t h e  separated boundary l aye r  on t h e  mater ia l  
performance can be obtained by a comparison of t h e  phenolic-cork da ta  of t h e  
present tests with da ta  from t e s t s  reported i n  reference 9. 
r epor t s  t e s t s  of 0.10-inch-thick (0.254-cm) phenolic-cork a t  comparable hea t ing  
rates but a t  en tha lp ies  from 4000 t o  8000 Btu/lb (9.3 t o  18.6 MJ/kg) as  com- 
pared with 900 Btu/lb (2.09 MJ/kg) of t h e  present t e s t s .  However, no e f f e c t  of 
enthalpy on thermal e f fec t iveness  w a s  detected over t h e  range from 4000 t o  
8000 Btu/lb (9.3 t o  18.6 MJ/kg). I n  addition, reference 9 c i t e s  da ta  from t e s t s  
a t  much lower en tha lp ies  which appear t o  agree with t h e i r  data and therefore  
concludes t h a t  enthalpy played only a secondary r o l e  i n  influencing t h e  behavior 
of high-temperature charring-composite materials. The phenolic-cork da ta  from 
t h e  present t e s t s  are shown i n  f igu re  15 compared with t h e  da ta  from reference 9. 
Data from reference 9 f o r  t e s t s  conducted i n  both a i r  and nitrogen a r e  shown i n  
f igu re  15. The data f o r  tests i n  nitrogen have been included as a guide t o  t h e  
t rend  of t he  l imi ted  da ta  f o r  t e s t s  i n  a i r .  The thermal e f fec t iveness  i n  the  
separated boundary l aye r  i s  seen t o  be about 30 percent higher than t h e  e f fec-  
t i veness  obtained i n  an attached laminar boundary l aye r  i n  a i r .  Although d i f -  
ferences i n  subs t ra te  heat capacity and bonding agent ex is ted  between t h e  t e s t s ,  
da t a  reported i n  reference 9 ind ica t e  t h a t  these  d i f fe rences  probably would not 
cause changes i n  thermal e f fec t iveness  exceeding 10 percent. Therefore, it i s  
concluded that t h e  performance of t h e  phenolic-cork i n  t h e  separated boundary 
l aye r  i s  not gross ly  d i f f e r e n t  from i t s  performance i n  an attached laminar 
boundary l aye r .  

This reference 

CONCLUDING REMARKS 

Several commercially ava i lab le  charring ab la to r s  have been experimentally 
evaluated i n  a separated boundary layer  a t  a heating r a t e  of approximately 
10 Btu/ft2-sec (1-13 kW/m2) and a t  an enthalpy of 900 Btu/lb (2.09 PIZJ/kg). 
The t e s t s  were conducted i n  a ceramic-heated a i r s t ream a t  a free-stream Mach 
number of 6. 

A phenolic-cork composition was found t o  be superior t o  t h e  o ther  mater ia l s  

Thermal preconditioning of the  phenolic- 
t e s t e d  on t h e  b a s i s  of t he  weight required t o  in su la t e  t he  subs t ra te  aga ins t  a 
looo F (56' K) r i s e  i n  temperature. 
cork composition d id  not a l t e r  i t s  in su la t ion  performance. 

The phenolic-cork experienced considerably g rea t e r  erosion than t h e  
phenolic-nylon, asbestos-phenolic, and the  subliming-salt compositions which 
ranked second, t h i r d ,  and four th ,  respec t ive ly ,  i n  l imi t ing  the  subs t r a t e  t e m -  
pera ture  rise; however, these  mater ia l s  developed e i t h e r  surface cracks o r  
l a rge  f i s s u r e s  i n  t h e  char l aye r .  

The thermal e f fec t iveness  of t h e  phenolic-cork composition i n  t h e  separated 
boundary l a y e r  w a s  not gross ly  d i f f e r e n t  from the  e f fec t iveness  reported by 
NASA Technical Note D-1889 i n  an attached laminar boundary l aye r  a t  t h e  same 
heating rate, bu t  a t  a considerably higher enthalpy. 

9 
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Increasing the heat-shield weight by a factor of 2 1  resulted in no change 
2 

in the thermal effectiveness for the phenolic-cork composition while the 
asbestos-phenolic, epoxy-solid, phenolic-nylon, and subliming-salt compositions 
showed initial increases in effectiveness of 15 to 20 percent and then tended 
to approach a constant effectiveness as the heat-shield weight was increased 
over two times. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., August 20, 1965. 
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TABLE I.- MA’IZR1A.L DESIGNATION, DENSITY, AND DESCRIPTION 

-~ ~ ~. 

Mat eri a1 

Phenolic-cork composition 

- 

Asbestos-phenolic composition 

Subliming salt composition 

Epoxy-solid composition 

Phenolic-nylon (PN-4) 

. 

Density 

~ b / d  

30.0 

32.0 

62.0 

50.0 

36.0 

480.6 

312.6 

993 - 2 

801.0 

576.7 

Description 

80% natural cork 
20% phenolic-binder 
Applied by wrapping 

Asbestos paper with organic 
filler and phenolic-resin 
binder 

Tape form 
~ ~- 

Inorganic salt with organic 

Spray applied 
binder 

~ - ~~ 

Two-part epoxy base with 

Spray applied 
high solid content 

15.8% phenolic-resin 
15.8$ phenolic Microballoons 

63.4% nylon 
Molded 

5.0% silica Eccospheres 

~- - 

12 

.. . 



TABLE 11.- TUNNEL OPERATING CONDITIONS 

Stagnation pressure. p s i a  (MN/m2) . . . . . . . . . . . . . . . .  1015 ( 7 . 0 )  
Stagnation temperature. OF (OK) . . . . . . . . . . . . . . . . .  2800 (1810) 
Enthalpy. Btu/lb (MJ/kg) . . . . . . . . . . . . . . . . . . . .  900 (2.09) 
Free-stream Mach number . . . . . . . . . . . . . . . . . . . .  6.1 
Free-stream s t a t i c  pressure.  p s i a  (k.N/mZ) . . . . . . . . . . . .  0.53 (3.65) 
Free-stream veloci ty .  f t / s e c  (m/sec) . . . . . . . . . . . . . .  6700 (2042) 
Runtime. sec . . . . . . . . . . . . . . . . . . . . . . . . . .  60 



W a t e r - c o o l e d  nozzle 

Exhaust o u t t i  .)-Air in 
Heat exchanger 

(a) Heat exchanger. 

Figure 1.- Components of Langley 11- 

,Cooling water for 
second minimum 

Diffuser 

Nozzle. test section, and diffuser 

(b) Nozzle, test section, and diffuser. 

- i nch  ceramic-heated tunnel. 
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(a) Model retracted. L- 65- 2688.1 

(b) Model in airstream. 

Figure 2.- Photographs of model retracted and model in airstream. 

L-65-2687.1 



(a) Model assembled for testing. 

Figure 3.- Model for specimen support. 

L-63-7022.1 



(b) Model disassembled. 

Figure 3.- Concluded. 

L- 63- 7045.1 



/ 
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#347 sta in less steel 
0 . 0 2 6  in.  (0.066 c m )  t h i c k n e s s  

t h e r m o c o u p l e  wires 

(a) Thin-wall slope calorimeter. 

Continuous - r e a d i n g  ca lo r imeters  

I-  Mild steel mounting plate 

(b) Mount ing plate for two continuous-reading calorimeters. 

Figure 4.- Calorimeters used to determine heat flux in specimen region. 



--Mild steel plate 

Figure 5.- Pressure-distribution model. 

Insulation materia: 

-.- i with epoxy resin 
/ bonded to D ~ U " J m  

- 3 equolly spaced 

A ~ u ~ i n ~ m  substrate 
0.050 in. io. 127 cm) 

t h i c k n e s s  

Figure 6.- Model of material test specimen. 



Oi l  ring a t  separation point 

1 Calorimeter 

S uppor t strut  \ $ o d e 1  

Rearview of model. Symbols 
indicate specimen positions 

+ + +  

1 6 r A t t o c h e d  turbulenl  
boundary layer.  Re f .  5 -7 

\ 
Attached laminar 

boundary layer. Ref.  5 

0 4 .8 1.2 
x /L 

Figure 7.- Heat-transfer distr ibution over specimen positions. 



(a) Before test. L-64-5682.1 

Figure 8.- 

(b) After test. L-64-5683.1 

Oi l  flow on  surface of rounded ogive nose and cyl indrical body du r ing  typical test. 
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Figure 9.- Comparison of materials on  the basis of the cold wall heat input  required fo r  a 100' F (56O K) temperature rise. 
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Figure 10.- Comparison of heat cycled specimens w i th  specimens tested as received f rom the  manufacturer. 



Rear of sDecimens Specimen p r o f i l e  before t e s t i n s  F r o n t  of specimens 

(a) Phenolic-cork composition. 

'd . -.- - *  

(b) Asbestos-phenolic composition. 

(d) Epoxy-solid composition 

(e) Phenol ic-nylon composition. 

Figure 11.- Sectioned specimens after testing. L-65-189 
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Before t e s t  

F r o n t  of specimens Af te r  t e s t  Rear  of specimens 

(a) Phenolic-cork composition. 

Before t e s t  

Af te r  t e s t  

(b) Phenolic-nylon, PN-4. 

Figure 12.- Surface of specimens before and after testing. L-65-190 
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Before t e s t  

Front of specimens A f t e r  t e s t  Rear of specimens 

(c) S ubl i ming-salt composition. 

Before t e s t  

Af t e r  t e s t  

(d) Asbestos-phenolic composition. 

Figure 12.- Continued. 

L- 65- 191 
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Before test 

Front of specimens Rear of specimens 

A f t e r  test 

(e) Epoxy- sol i d  composition. 

Figure 12.- Concluded. 

L-65-192 
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Figure 13.- Variation of thermal effectiveness wi th  shield unit weignt. 



Substrate temperature rise, O K  
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Figure 14.- Thermal effectiveness as a func t ion  of substrate temperature r ise for  0.1-inch-thick (2.54-cm) specimens as received 
from the manufacturer. 
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Figure 15.- Comparison of phenolic-cork thermal effectiveness i n  a separated and attached boundary layer. 
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“The aeronautical and space activities of the United States shall be 
conducted so as i o  contribute . . . t o  the expansion of hziman knowl- 
edge of phenomena in the  atmosphere and space. T h e  Administration 
shall provide for the widest practicable and appropriate di~seniination 
of information concerning its activities and the results thereof .” 

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958 

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS 

TECHNICAL REPORTS: 
important, complete, and a lasting contribution to existing knowledge. 

TECHNICAL NOTES: 
of importance as a contribution to existing knowledge. 
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